
Friday, 14 February 2014
The World's first Seismograph

Wednesday, 15 January 2014
How Tattoo Machine Works?
A tattoo machine is a hand-held device generally used to create a tattoo, a permanent marking of the skin with indelible ink. Modern tattoo machines use electromagnetic coils to move an armature bar up and down. Connected to the armature bar is a barred needle grouping that pushes ink into the skin. Tattoo artists generally use the term "machine", or even "iron", to refer to their equipment. The word "gun" is often used but many tattoo professionals dislike it. In addition to "coiled" tattoo machine there are also Rotary Tattoo Machines, which are powered by regulated motors rather than electromagnetic coils
How an X-Ray machine works?
The heart of an X-ray generator is the X-ray tube. Like any vacuum tube, the X-ray tube contains a cathode, which directs a stream of electrons into a vacuum, and an anode, which collects the electrons and is made of copper to evacuate the heat generated by the collision. When the electrons collide the target, about 1% of the resulting energy is emitted as X-rays, with the remaining 99% released as heat. Due to the high energy of the electrons that reach relativistic speeds the target is usually made of tungsten even if other material can be used particularly in XRF applications.
A cooling system is necessary to cool the anode; many X-ray generators use water or oil recirculating systems
How a sewing machine works?
A sewing machine is a machine used to stitch fabric and other materials together with thread. Sewing machines were invented during the first Industrial Revolution to decrease the amount of manual sewing work performed in clothing companies. Since the invention of the first working sewing machine, generally considered to have been the work of Englishman Thomas Saint in 1790,[1] the sewing machine has greatly improved the efficiency and productivity of the clothing industry.
Home sewing machines are designed for one person to sew individual items while using a single stitch type. In a modern sewing machine the fabric easily glides in and out of the machine without the inconvenience of needles and thimbles and other such tools used in hand sewing, automating the process of stitching and saving time.
Industrial sewing machines, by contrast, are larger, faster, more complex, and more varied in their size, cost, appearance, and task.
The fabric shifting mechanism may be a workguide or may be pattern-controlled (e.g., jacquard type). Some machines can create embroidery-type stitches. Some have a work holder frame. Some have a workfeeder that can move along a curved path, while others have a workfeeder with a work clamp. Needle guards, safety devices to prevent accidental needle-stick injuries, are often found on modern sewing machines.
How a washer works?
A washing machine (laundry machine, clothes washer, or washer) is a machine to wash laundry, such as clothing and sheets. The term is mostly applied only to machines that use water as opposed to dry cleaning (which uses alternative cleaning fluids, and is performed by specialist businesses) or ultrasonic cleaners. Washing entails immersing, dipping, rubbing, or scrubbing in water usually accompanied by detergent, or bleach. The simplest machines may simply agitate clothes in water; automatic machines may fill, empty, wash, spin, and heat in a cycle. Most washing machines remove substantial amounts of water from the laundry at the end of a wash cycle, but do not completely dry it.
Sunday, 12 January 2014
Nanotechnology: How it works
Nanotechnology (sometimes shortened to "nanotech") is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology[1][2] referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers. This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research. Through its National Nanotechnology Initiative, the USA has invested 3.7 billion dollars. The European Union has invested 1.2 billion and Japan 750 million dollars.[3]
Nanotechnology as defined by size is naturally very broad, including fields of science as diverse as surface science, organic chemistry, molecular biology, semiconductor physics, microfabrication, etc.[4] The associated research and applications are equally diverse, ranging from extensions of conventional device physics to completely new approaches based upon molecular self-assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale.
Scientists currently debate the future implications of nanotechnology. Nanotechnology may be able to create many new materials and devices with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials,[5] and their potential effects on global economics, as well as speculation about various doomsday scenarios. These concerns have led to a debate among advocacy groups and governments on whether special regulation of nanotechnology is warranted
Nanotechnology Documentary Quantum Computing, what it is, how it works - YouTube